Detection of artificial water flows by the lateral line system of a benthic feeding cichlid fish.
نویسندگان
چکیده
The mechanosensory lateral line system of fishes detects water motions within a few body lengths of the source. Several types of artificial stimuli have been used to probe lateral line function in the laboratory, but few studies have investigated the role of flow sensing in benthic feeding teleosts. In this study, we used artificial flows emerging from a sandy substrate to assess the contribution of flow sensing to prey detection in the peacock cichlid, Aulonocara stuartgranti, which feeds on benthic invertebrates in Lake Malawi. Using a positive reinforcement protocol, we trained fish to respond to flows lacking the visual and chemical cues generated by tethered prey in prior studies with A. stuartgranti Fish successfully responded to artificial flows at all five rates presented (characterized using digital particle image velocimetry), and showed a range of flow-sensing behaviors, including an unconditioned bite response. Immediately after lateral line inactivation, fish rarely responded to flows and the loss of vital fluorescent staining of hair cells (with 4-di-2-ASP) verified lateral line inactivation. Within 2 days post-treatment, some aspects of flow-sensing behavior returned and after 7 days, flow-sensing behavior and hair cell fluorescence both returned to pre-treatment levels, which is consistent with the reported timing of hair cell regeneration in other vertebrates. The presentation of ecologically relevant water flows to assess flow-sensing behaviors and the use of a positive reinforcement protocol are methods that present new opportunities to study the role of flow sensing in the feeding ecology of benthic feeding fishes.
منابع مشابه
Sensory basis for detection of benthic prey in two Lake Malawi cichlids.
The adaptive radiations of African cichlids resulted in a diversity of feeding morphologies and strategies, but the role of sensory biology in prey detection and feeding ecology remains largely unexplored. Two endemic Lake Malawi cichlid genera, Tramitichromis and Aulonocara, feed on benthic invertebrates, but differ in lateral line morphology (narrow and widened lateral line canals, respective...
متن کاملFeeding in the dark: lateral-line-mediated prey detection in the peacock cichlid Aulonocara stuartgranti.
The cranial lateral line canal system of teleost fishes is morphologically diverse and is characterized by four patterns. One of these, widened lateral line canals, has evolved convergently in a wide range of teleosts, including the Lake Malawi peacock cichlids (Aulonocara), and has been attributed to its role in prey detection. The ability to study Aulonocara in the laboratory provides an oppo...
متن کاملLake Malawi cichlid evolution along a benthic/limnetic axis
Divergence along a benthic to limnetic habitat axis is ubiquitous in aquatic systems. However, this type of habitat divergence has largely been examined in low diversity, high latitude lake systems. In this study, we examined the importance of benthic and limnetic divergence within the incredibly species-rich radiation of Lake Malawi cichlid fishes. Using novel phylogenetic reconstructions, we ...
متن کاملThe mechanosensory lateral line is used to assess opponents and mediate aggressive behaviors during territorial interactions in an African cichlid fish.
Fish must integrate information from multiple sensory systems to mediate adaptive behaviors. Visual, acoustic and chemosensory cues provide contextual information during social interactions, but the role of mechanosensory signals detected by the lateral line system during aggressive behaviors is unknown. The aim of this study was first to characterize the lateral line system of the African cich...
متن کاملThe influence of viscous hydrodynamics on the fish lateral-line system.
Fish exhibit many behaviors that involve sensing water flows with their lateral-line system. In many situations, viscosity affects how the flow interacts with the body of the fish and the neuromasts of the lateral line. Here we discuss how viscosity influences the stimulus to the fish lateral-line system. The movement of a fish's body creates flows that can interfere with the detection of exter...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- The Journal of experimental biology
دوره 219 Pt 7 شماره
صفحات -
تاریخ انتشار 2016